\(\int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [616]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 387 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {4 (a-b) b \sqrt {a+b} \left (41 a^2-3 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (25 a^2-57 a b-6 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^2 d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {16 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/7*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(7/2)+16/35*b*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x
+c)^(5/2)+2/105*(25*a^2+3*b^2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d/cos(d*x+c)^(3/2)+4/105*(a-b)*b*(41*a^2-3*
b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2
)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d+2/105*(a-b)*(25*a^2-57*a*b-6*b^2)*cot(d*
x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec
(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 387, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2878, 3134, 3077, 2895, 3073} \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (25 a^2-57 a b-6 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{105 a^2 d}+\frac {2 \left (25 a^2+3 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 b (a-b) \sqrt {a+b} \left (41 a^2-3 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{105 a^3 d}+\frac {16 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(9/2),x]

[Out]

(4*(a - b)*b*Sqrt[a + b]*(41*a^2 - 3*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*
Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a
- b)])/(105*a^3*d) + (2*(a - b)*Sqrt[a + b]*(25*a^2 - 57*a*b - 6*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b
*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqr
t[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^2*d) + (2*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(7*d*Cos[c + d*x]
^(7/2)) + (16*b*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(35*d*Cos[c + d*x]^(5/2)) + (2*(25*a^2 + 3*b^2)*Sqrt[a
+ b*Cos[c + d*x]]*Sin[c + d*x])/(105*a*d*Cos[c + d*x]^(3/2))

Rule 2878

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^
2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[c*
(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d
*(b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2}{7} \int \frac {4 a b+\frac {1}{2} \left (5 a^2+7 b^2\right ) \cos (c+d x)+2 a b \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {16 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 \int \frac {\frac {1}{4} a \left (25 a^2+3 b^2\right )+11 a^2 b \cos (c+d x)+4 a b^2 \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{35 a} \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {16 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 \int \frac {\frac {1}{4} a b \left (41 a^2-3 b^2\right )+\frac {1}{8} a^2 \left (25 a^2+51 b^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{105 a^2} \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {16 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a d \cos ^{\frac {3}{2}}(c+d x)}+\frac {\left ((a-b) \left (25 a^2-57 a b-6 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{105 a}+\frac {\left (2 b \left (41 a^2-3 b^2\right )\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{105 a} \\ & = \frac {4 (a-b) b \sqrt {a+b} \left (41 a^2-3 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (25 a^2-57 a b-6 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^2 d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {16 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.33 (sec) , antiderivative size = 1302, normalized size of antiderivative = 3.36 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-\frac {4 a \left (25 a^4-31 a^2 b^2+6 b^4\right ) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-4 a \left (-82 a^3 b+6 a b^3\right ) \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 \left (-82 a^2 b^2+6 b^4\right ) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \text {arcsinh}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{105 a^2 d}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (\frac {2 \sec ^2(c+d x) \left (25 a^2 \sin (c+d x)+3 b^2 \sin (c+d x)\right )}{105 a}+\frac {4 \sec (c+d x) \left (41 a^2 b \sin (c+d x)-3 b^3 \sin (c+d x)\right )}{105 a^2}+\frac {16}{35} b \sec ^2(c+d x) \tan (c+d x)+\frac {2}{7} a \sec ^3(c+d x) \tan (c+d x)\right )}{d} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(9/2),x]

[Out]

((-4*a*(25*a^4 - 31*a^2*b^2 + 6*b^4)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*
Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[(
(a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c
 + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(-82*a^3*b + 6*a*b^3)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*S
qrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c +
d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*
x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*
Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c +
 d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*S
in[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(-82*a^2*b^2 + 6*b^4)*((I*Cos[(c + d*x
)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c
 + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((
a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a +
b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/
2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])
- (a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a
 + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Cs
c[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d
*x]])))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(105*a^2*d) + (Sqrt[Cos[c + d*x]]
*Sqrt[a + b*Cos[c + d*x]]*((2*Sec[c + d*x]^2*(25*a^2*Sin[c + d*x] + 3*b^2*Sin[c + d*x]))/(105*a) + (4*Sec[c +
d*x]*(41*a^2*b*Sin[c + d*x] - 3*b^3*Sin[c + d*x]))/(105*a^2) + (16*b*Sec[c + d*x]^2*Tan[c + d*x])/35 + (2*a*Se
c[c + d*x]^3*Tan[c + d*x])/7))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2498\) vs. \(2(349)=698\).

Time = 15.87 (sec) , antiderivative size = 2499, normalized size of antiderivative = 6.46

method result size
default \(\text {Expression too large to display}\) \(2499\)

[In]

int((a+cos(d*x+c)*b)^(3/2)/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

2/105/d*(15*a^4*sin(d*x+c)+27*a^2*b^2*cos(d*x+c)^2*sin(d*x+c)-6*b^4*cos(d*x+c)^4*sin(d*x+c)+25*a^4*cos(d*x+c)^
2*sin(d*x+c)+82*a^2*b^2*cos(d*x+c)^4*sin(d*x+c)-6*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+co
s(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^4*cos(d*x+c)^5-25*EllipticF(cot(d*
x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*a^4*cos(d*x+c)^5-12*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x
+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^4*cos(d*x+c)^4-50*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b
)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^4*cos(d*x+c)
^4-6*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*b^4*cos(d*x+c)^3-25*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos
(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^4*cos(d*x+c)^3-12*EllipticE(cot(d*x
+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*a*b^3*cos(d*x+c)^4-164*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d
*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^4-102*EllipticF(cot(d*x+c)-csc(d*x+c),(
-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*c
os(d*x+c)^4+12*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(
1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^4+82*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1
/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^3+82*Ell
ipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^3-6*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+
c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^3-82*EllipticF(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*a^3*b*cos(d*x+c)^3-51*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c
))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^3+6*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-
b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x
+c)^3+82*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^5+82*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(
(a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^5-6*Elliptic
E(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^5-82*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/
(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^5-51*EllipticF(cot(d*x+c)-csc(d
*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^
2*b^2*cos(d*x+c)^5+6*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a
+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^5+164*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a
+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^4
+164*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^4+25*a^4*cos(d*x+c)^3*sin(d*x+c)+15*a^4*cos(d*x+c)*sin(d*x+c)+
39*a^3*b*cos(d*x+c)*sin(d*x+c)+39*a^3*b*cos(d*x+c)^2*sin(d*x+c)+107*a^3*b*cos(d*x+c)^3*sin(d*x+c)+27*a^2*b^2*c
os(d*x+c)^3*sin(d*x+c)-3*a*b^3*cos(d*x+c)^3*sin(d*x+c)+25*a^3*b*cos(d*x+c)^4*sin(d*x+c)+3*a*b^3*cos(d*x+c)^4*s
in(d*x+c))/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(7/2)/a^2

Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(9/2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(9/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(9/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{9/2}} \,d x \]

[In]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(9/2),x)

[Out]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(9/2), x)